Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Struct Biol ; 216(1): 108061, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185342

RESUMO

The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.


Assuntos
Durapatita , Vitronectina , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos
2.
J Am Chem Soc ; 145(28): 15018-15023, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418311

RESUMO

Although titanosilicalite-1 (TS-1) is among the most successful oxidation catalysts used in industry, its active site structure is still debated. Recent efforts have mostly focused on understanding the role of defect sites and extraframework Ti. Here, we report the 47/49Ti signature of TS-1 and molecular analogues [Ti(OTBOS)4] and [Ti(OTBOS)3(OiPr)] using novel MAS CryoProbe to enhance the sensitivity. While the dehydrated TS-1 displays chemical shifts similar to those of molecular homologues, confirming the tetrahedral environment of Ti consistent with X-ray absorption spectroscopy, it is associated with a distribution of larger quadrupolar coupling constants, indicating an asymmetric environment. Detailed computational studies on cluster models highlights the high sensitivity of the NMR signatures (chemical shift and quadrupolar coupling constant) to small local structural changes. These calculations show that, while it will be difficult to distinguish mono- vs dinuclear sites, the sensitivity of the 47/49Ti NMR signature should enable distinguishing the Ti location among specific T site positions.

3.
Chem Commun (Camb) ; 59(35): 5205-5208, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042636

RESUMO

67 Zn solid-state NMR suffers from low sensitivity, limiting its ability to probe the Zn2+ surroundings in MOFs. We report a breakthrough in overcoming challenges in 67Zn NMR. Combining new cryogenic MAS probe technology and performing NMR experiments at a high magnetic field results in remarkable signal enhancement, yielding enhanced information for MOF characterization.

4.
Analyst ; 148(4): 724-734, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36722866

RESUMO

Solid-state nuclear magnetic resonance (ssNMR) is a high-resolution and versatile spectroscopic tool for characterizing pharmaceutical solids. However, the inherent low sensitivity of NMR remains a significant challenge in the analysis of natural abundance drug substances and products. Here, we report, for the first time, the application of a CPMAS CryoProbe™ to improve the sensitivity of 13C and 15N detection by approximately 5 to 6 times for solid-state analysis of a commercial pharmaceutical drug posaconazole (POSA). The sensitivity enhancement enables two-dimensional (2D) 13C-13C and 1H-15N correlation experiments, which are otherwise time-prohibitive using regular MAS probes, for resonance assignment and structural elucidation. These polarization transfer and correlation experiments reveal drug-drug and drug-polymer interactions in amorphous POSA and its amorphous solid dispersion formulation. Our results demonstrated that the CPMAS CryoProbe™ can be widely applied for routine pharmaceutical analysis and advanced structural investigations with significantly enhanced efficiency and throughput.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas
5.
J Am Soc Nephrol ; 33(9): 1677-1693, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961788

RESUMO

BACKGROUND: Secondary hyperparathyroidism (SHP) is a common complication of CKD that increases morbidity and mortality. In experimental SHP, increased parathyroid hormone (PTH) expression is due to enhanced PTH mRNA stability, mediated by changes in its interaction with stabilizing AUF1 and destabilizing KSRP. The isomerase Pin1 leads to KSRP dephosphorylation, but in SHP parathyroid Pin1 activity is decreased and hence phosphorylated KSRP fails to bind PTH mRNA, resulting in high PTH mRNA stability and levels. The up- and downstream mechanisms by which CKD stimulates the parathyroid glands remain elusive. METHODS: Adenine-rich high-phosphate diets induced CKD in rats and mice. Parathyroid organ cultures and transfected cells were incubated with Pin1 inhibitors for their effect on PTH expression. Mass spectrometry was performed on both parathyroid and PTH mRNA pulled-down proteins. RESULTS: CKD led to changes in rat parathyroid proteome and phosphoproteome profiles, including KSRP phosphorylation at Pin1 target sites. Furthermore, both acute and chronic kidney failure led to parathyroid-specific Pin1 Ser16 and Ser71 phosphorylation, which disrupts Pin1 activity. Pharmacologic Pin1 inhibition, which mimics the decreased Pin1 activity in SHP, increased PTH expression ex vivo in parathyroid glands in culture and in transfected cells through the PTH mRNA-protein interaction element and KSRP phosphorylation. CONCLUSIONS: Kidney failure leads to loss of parathyroid Pin1 activity by inducing Pin1 phosphorylation. This predisposes parathyroids to increase PTH production through impaired PTH mRNA decay that is dependent on KSRP phosphorylation at Pin1-target motifs. Pin1 and KSRP phosphorylation and the Pin1-KSRP-PTH mRNA axis thus drive SHP.


Assuntos
Hiperparatireoidismo Secundário , Falência Renal Crônica , Insuficiência Renal , Ratos , Camundongos , Animais , Glândulas Paratireoides/metabolismo , RNA Mensageiro/metabolismo , Fosforilação , Hiperparatireoidismo Secundário/etiologia , Hormônio Paratireóideo , Falência Renal Crônica/complicações , Insuficiência Renal/complicações
6.
Chem Sci ; 13(9): 2591-2603, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35340864

RESUMO

We report synthesis and solid-state 17O NMR characterization of α-d-glucose for which all six oxygen atoms are site-specifically 17O-labeled. Solid-state 17O NMR spectra were recorded for α-d-glucose/NaCl/H2O (2/1/1) cocrystals under static and magic-angle-spinning (MAS) conditions at five moderate, high, and ultrahigh magnetic fields: 14.1, 16.4, 18.8, 21.1, and 35.2 T. Complete 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were determined for each of the six oxygen-containing functional groups in α-d-glucose. Paramagnetic Cu(ii) doping was found to significantly shorten the spin-lattice relaxation times for both 1H and 17O nuclei in these compounds. A combination of the paramagnetic Cu(ii) doping, new CPMAS CryoProbe technology, and apodization weighted sampling led to a sensitivity boost for solid-state 17O NMR by a factor of 6-8, which made it possible to acquire high-quality 2D 17O multiple-quantum (MQ) MAS spectra for carbohydrate compounds. The unprecedented spectral resolution offered by 2D 17O MQMAS spectra permitted detection of a key structural difference for a single hydrogen bond between two types of crystallographically distinct α-d-glucose molecules. This work represents the first case where all oxygen-containing functional groups in a carbohydrate molecule are site-specifically 17O-labeled and fully characterized by solid-state 17O NMR. Gauge Including Projector Augmented Waves (GIPAW) DFT calculations were performed to aid 17O and 13C NMR signal assignments for a complex crystal structure where there are six crystallographically distinct α-d-glucose molecules in the asymmetric unit.

7.
Metabolites ; 12(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208186

RESUMO

Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that induces morbidity and mortality in patients. How CKD stimulates the parathyroid to increase parathyroid hormone (PTH) secretion, gene expression and cell proliferation remains an open question. In experimental SHP, the increased PTH gene expression is post-transcriptional and mediated by PTH mRNA-protein interactions that promote PTH mRNA stability. These interactions are orchestrated by the isomerase Pin1. Pin1 participates in conformational change-based regulation of target proteins, including mRNA-binding proteins. In SHP, Pin1 isomerase activity is decreased, and thus, the Pin1 target and PTH mRNA destabilizing protein KSRP fails to bind PTH mRNA, increasing PTH mRNA stability and levels. An additional level of post-transcriptional regulation is mediated by microRNA (miRNA). Mice with parathyroid-specific knockout of Dicer, which facilitates the final step in miRNA maturation, lack parathyroid miRNAs but have normal PTH and calcium levels. Surprisingly, these mice fail to increase serum PTH in response to hypocalcemia or uremia, indicating a role for miRNAs in parathyroid stimulation. SHP often leads to parathyroid hyperplasia. Reduced expressions of parathyroid regulating receptors, activation of transforming growth factor α-epidermal growth factor receptor, cyclooxygenase 2-prostaglandin E2 and mTOR signaling all contribute to the enhanced parathyroid cell proliferation. Inhibition of mTOR by rapamycin prevents and corrects the increased parathyroid cell proliferation of SHP. This review summarizes the current knowledge on the mechanisms that stimulate the parathyroid cell at multiple levels in SHP.

8.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996869

RESUMO

NMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze ß-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site. Most notable is the water molecule immediately adjacent to the substrate ß-carbon, which serves as a hydrogen bond donor to the ε-amino group of the acid-base catalytic residue ßLys87. From this analysis, a detailed three-dimensional picture of structure and reactivity emerges, highlighting the fate of the L-serine hydroxyl leaving group and the reaction pathway back to the preceding transition state. Reaction of the α-aminoacrylate intermediate with benzimidazole, an isostere of the natural substrate indole, shows benzimidazole bound in the active site and poised for, but unable to initiate, the subsequent bond formation step. When modeled into the benzimidazole position, indole is positioned with C3 in contact with the α-aminoacrylate Cß and aligned for nucleophilic attack. Here, the chemically detailed, three-dimensional structure from NMR-assisted crystallography is key to understanding why benzimidazole does not react, while indole does.


Assuntos
Alanina/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Triptofano Sintase/química , Catálise , Indóis , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Fosfato de Piridoxal/metabolismo , Triptofano Sintase/metabolismo
9.
Nat Commun ; 12(1): 676, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514729

RESUMO

Across the evolutionary history of insects, the shift from nitrogen-rich carnivore/omnivore diets to nitrogen-poor herbivorous diets was made possible through symbiosis with microbes. The herbivorous turtle ants Cephalotes possess a conserved gut microbiome which enriches the nutrient composition by recycling nitrogen-rich metabolic waste to increase the production of amino acids. This enrichment is assumed to benefit the host, but we do not know to what extent. To gain insights into nitrogen assimilation in the ant cuticle we use gut bacterial manipulation, 15N isotopic enrichment, isotope-ratio mass spectrometry, and 15N nuclear magnetic resonance spectroscopy to demonstrate that gut bacteria contribute to the formation of proteins, catecholamine cross-linkers, and chitin in the cuticle. This study identifies the cuticular components which are nitrogen-enriched by gut bacteria, highlighting the role of symbionts in insect evolution, and provides a framework for understanding the nitrogen flow from nutrients through bacteria into the insect cuticle.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Formigas/crescimento & desenvolvimento , Microbioma Gastrointestinal/fisiologia , Herbivoria/fisiologia , Simbiose/fisiologia , Aminoácidos/metabolismo , Animais , Formigas/metabolismo , Formigas/microbiologia , Quitina/biossíntese , Proteínas de Insetos/biossíntese , Nitrogênio/metabolismo
10.
Magn Reson Chem ; 59(2): 99-107, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32761649

RESUMO

Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone. We report here approximately a fourfold sensitivity enhancement in the natural abundance 13 C spectrum compared with the room temperature conventional solid-state NMR probe. With the advantage of sensitivity enhancement, we have been able to perform natural abundance 15 N cross-polarization magic angle spinning (CPMAS) and two-dimensional (2D) 1 H-13 C heteronuclear correlation (HETCOR) experiments of native collagen within a reasonable timeframe. Due to high sensitivity, 2D 1 H/13 C HETCOR experiments have helped in detecting several short and long-range interactions of native collagen assembly, thus significantly expanding the scope of the method to such challenging biomaterials.


Assuntos
Matriz Óssea/química , Colágeno/química , Animais , Isótopos de Carbono/química , Fêmur/química , Cabras , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos
11.
Kidney Int ; 98(6): 1461-1475, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32721445

RESUMO

Circadian rhythms in metabolism, hormone secretion, cell cycle and locomotor activity are regulated by a molecular circadian clock with the master clock in the suprachiasmatic nucleus of the central nervous system. However, an internal clock is also expressed in several peripheral tissues. Although about 10% of all genes are regulated by clock machinery an internal molecular circadian clock in the parathyroid glands has not previously been investigated. Parathyroid hormone secretion exhibits a diurnal variation and parathyroid hormone gene promoter contains an E-box like element, a known target of circadian clock proteins. Therefore, we examined whether an internal molecular circadian clock is operating in parathyroid glands, whether it is entrained by feeding and how it responds to chronic kidney disease. As uremia is associated with extreme parathyroid growth and since disturbed circadian rhythm is related to abnormal growth, we examined the expression of parathyroid clock and clock-regulated cell cycle genes in parathyroid glands of normal and uremic rats. Circadian clock genes were found to be rhythmically expressed in normal parathyroid glands and this clock was minimally entrained by feeding. Diurnal regulation of parathyroid glands was next examined. Significant rhythmicity of fibroblast-growth-factor-receptor-1, MafB and Gata3 was found. In uremic rats, deregulation of circadian clock genes and the cell cycle regulators, Cyclin D1, c-Myc, Wee1 and p27, which are influenced by the circadian clock, was found in parathyroid glands as well as the aorta. Thus, a circadian clock operates in parathyroid glands and this clock and downstream cell cycle regulators are disturbed in uremia and may contribute to dysregulated parathyroid proliferation in secondary hyperparathyroidism.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Insuficiência Renal Crônica , Animais , Doenças Ósseas , Relógios Circadianos/genética , Ritmo Circadiano/genética , Minerais , Glândulas Paratireoides , Ratos , Insuficiência Renal Crônica/genética
12.
Int J Pharm ; 585: 119442, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32445910

RESUMO

Lansoprazole (LPZ) is an acid pump inhibitor, which readily degrades upon acidic or basic conditions and under heating. We investigated here LPZ stability upon incorporation in particles made of cyclodextrin metal-organic frameworks (CD-MOFs). LPZ loaded CD-MOFs were successfully synthesized, reaching high LPZ payloads of 23.2 ± 2.1 wt%, which correspond to a molar ratio of 1:1 between LPZ and γ-CD. The homogeneity of LPZ loaded CD-MOFs in terms of component distribution was confirmed by elemental mapping by STEM-EDX. Both CTAB, the surfactant used in the CD-MOFs synthesis, and LPZ compete for their inclusion in the CD cavities. CTAB allowed obtaining regular cubic particles of around 5 µm with 15 wt% residual CTAB amounts. When LPZ was incorporated, the residual CTAB amount was less than 0.1 wt%, suggesting a higher affinity of LPZ for the CDs than CTAB. These findings were confirmed by molecular simulations. Vibrational circular dichroism studies confirmed the LPZ incorporation inside the CDs. Solid-state NMR showed that LPZ was located in the CDs and that it remained intact even after three years storage. Remarkably, the CD-MOFs matrix protected the drug upon thermal decomposition. This study highlights the interest of CD-MOFs for the incorporation and protection of LPZ.


Assuntos
Ciclodextrinas/química , Lansoprazol/administração & dosagem , Estruturas Metalorgânicas/química , Cetrimônio/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Estabilidade de Medicamentos , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Difração de Raios X , gama-Ciclodextrinas/química
13.
FEBS J ; 287(14): 2903-2913, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32191397

RESUMO

Parathyroid hormone (PTH) regulates serum calcium levels and bone strength. Secondary hyperparathyroidism (SHP) is a common complication of chronic kidney disease (CKD) that correlates with morbidity and mortality. In experimental SHP, the increased PTH gene expression is due to increased PTH mRNA stability and is mediated by protein-PTH mRNA interactions. Adenosine-uridine-rich binding factor 1 (AUF1) stabilizes and K-homology splicing regulatory protein (KSRP) destabilizes PTH mRNA. The peptidyl-prolyl cis/trans isomerase Pin1 acts on target proteins, including mRNA-binding proteins. Pin1 leads to KSRP dephosphorylation, but in SHP, parathyroid Pin1 activity is decreased and phosphorylated KSRP fails to bind PTH mRNA, leading to increased PTH mRNA stability and levels. A further level of post-transcriptional regulation occurs through microRNA (miRNA). Dicer mediates the final step of miRNA maturation. Parathyroid-specific Dicer knockout mice that lack miRNAs in the parathyroid develop normally. Surprisingly, these mice fail to increase serum PTH in response to both hypocalcemia and CKD, indicating that parathyroid Dicer and miRNAs are essential for stimulation of the parathyroid. Human and rodent parathyroids share similar miRNA profiles that are altered in hyperparathyroidism. The evolutionary conservation of abundant miRNAs and their regulation in hyperparathyroidism indicate their significance in parathyroid physiology and pathophysiology. let-7 and miR-148 antagonism modifies PTH secretion in vivo and in vitro, suggesting roles for specific miRNAs in parathyroid function. This review summarizes the current knowledge on the post-transcriptional mechanisms of PTH gene expression in SHP and the central contribution of miRNAs to the high serum PTH levels of both primary hyperparathyroidism and SHP.


Assuntos
Regulação da Expressão Gênica , Hiperparatireoidismo Secundário/patologia , Hormônio Paratireóideo/genética , Processamento Pós-Transcricional do RNA , Insuficiência Renal Crônica/patologia , Animais , Humanos , Hiperparatireoidismo Secundário/genética , Hiperparatireoidismo Secundário/metabolismo , Hormônio Paratireóideo/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
14.
J Magn Reson ; 311: 106680, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31951864

RESUMO

Despite breakthroughs in MAS NMR hardware and experimental methodologies, sensitivity remains a major challenge for large and complex biological systems. Here, we report that 3-4 fold higher sensitivities can be obtained in heteronuclear-detected experiments, using a novel HCN CPMAS probe, where the sample coil and the electronics operate at cryogenic temperatures, while the sample is maintained at ambient temperatures (BioSolids CryoProbe™). Such intensity enhancements permit recording 2D and 3D experiments that are otherwise time-prohibitive, such as 2D 15N-15N proton-driven spin diffusion and 15N-13C double cross polarization to natural abundance carbon experiments. The benefits of CPMAS CryoProbe-based experiments are illustrated for assemblies of kinesin Kif5b with microtubules, HIV-1 capsid protein assemblies, and fibrils of human Y145Stop and fungal HET-s prion proteins - demanding systems for conventional MAS solid-state NMR and excellent reference systems in terms of spectral quality. We envision that this probe technology will be beneficial for a wide range of applications, especially for biological systems suffering from low intrinsic sensitivity and at physiological temperatures.


Assuntos
Cianeto de Hidrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas do Capsídeo/química , Carbono/química , Temperatura Baixa , Escherichia coli/química , Fungos/química , HIV-1/química , Humanos , Indicadores e Reagentes , Cinesinas/química , Microscopia Eletrônica de Transmissão , Microtúbulos/química , Microtúbulos/ultraestrutura , Proteínas Priônicas/química , Sensibilidade e Especificidade , Temperatura
15.
Commun Chem ; 3(1): 164, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36703336

RESUMO

Self-assembling peptides are an exemplary class of supramolecular biomaterials of broad biomedical utility. Mechanistic studies on the peptide self-assembly demonstrated the importance of the oligomeric intermediates towards the properties of the supramolecular biomaterials being formed. In this study, we demonstrate how the overall yield of the supramolecular assemblies are moderated through subtle molecular changes in the peptide monomers. This strategy is exemplified with a set of surfactant-like peptides (SLPs) with different ß-sheet propensities and charged residues flanking the aggregation domains. By integrating different techniques, we show that these molecular changes can alter both the nucleation propensity of the oligomeric intermediates and the thermodynamic stability of the fibril structures. We demonstrate that the amount of assembled nanofibers are critically defined by the oligomeric nucleation propensities. Our findings offer guidance on designing self-assembling peptides for different biomedical applications, as well as insights into the role of protein gatekeeper sequences in preventing amyloidosis.

17.
J Magn Reson ; 310: 106646, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751897

RESUMO

Nucleophosmin (NPM1) is an abundant nucleolar protein that aids in the maturation of pre-ribosomal particles and participates in oncogenic stress responses through its interaction with the Alternative Reading Frame tumor suppressor (p14ARF). NPM1 mediates multiple mechanisms of phase separation which contribute to the liquid-like properties of nucleoli. However, the effects of phase separation on the structure and dynamics of NPM1 are poorly understood. Here we show that NPM1 undergoes phase separation with p14ARF in vitro, forming condensates that immobilize both proteins. We probed the structure and dynamics of NPM1 within the condensed phase using solid-state NMR spectroscopy. Our results demonstrate that within the condensed phase, the NPM1 oligomerization domain forms an immobile scaffold, while the central intrinsically disordered region and the C-terminal nucleic acid binding domain exhibit relative mobility.


Assuntos
Proteínas Nucleares/química , Proteína Supressora de Tumor p14ARF/química , Sequência de Aminoácidos , Nucléolo Celular/química , Clonagem Molecular , Humanos , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Nucleofosmina , Fases de Leitura Aberta , Estrutura Secundária de Proteína
18.
Kidney Int ; 94(2): 315-325, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29861060

RESUMO

The high serum fibroblast growth factor 23 (FGF23) levels in patients with acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with increased morbidity and mortality. Mice with folic acid-induced AKI had an increase in bone FGF23 mRNA expression together with an increase in serum FGF23 and several circulating cytokines including interleukin-6 (IL-6). Dexamethasone partially prevented the increase in IL-6 and FGF23 in the AKI mice. IL-6 knock-out mice fed an adenine diet to induce CKD failed to increase bone FGF23 mRNA and had a muted increase in serum FGF23 levels, compared with the increases in wild-type mice with CKD. Therefore, IL-6 contributes to the increase in FGF23 observed in CKD. Hydrodynamic tail injection of IL-6/soluble IL-6 receptor (sIL-6R) fusion protein hyper IL-6 (HIL-6) plasmid increased serum FGF23 levels. Circulating sIL-6R levels were increased in both CKD and AKI mice, suggesting that IL-6 increases FGF23 through sIL-6R-mediated trans-signaling. Renal IL-6 mRNA expression was increased in mice with either AKI or CKD, suggesting the kidney is the source for the increased serum IL-6 levels in the uremic state. HIL-6 also increased FGF23 mRNA in calvaria organ cultures and osteoblast-like UMR106 cells in culture, demonstrating a direct effect of IL-6 on FGF23 expression. HIL-6 increased FGF23 promoter activity through STAT3 phosphorylation and its evolutionarily conserved element in the FGF23 promoter. Thus, IL-6 increases FGF23 transcription and contributes to the high levels of serum FGF23 in both acute and chronic kidney disease.


Assuntos
Injúria Renal Aguda/imunologia , Fatores de Crescimento de Fibroblastos/metabolismo , Interleucina-6/metabolismo , Insuficiência Renal Crônica/imunologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Adenina/toxicidade , Animais , Osso e Ossos/patologia , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/imunologia , Ácido Fólico/toxicidade , Glucocorticoides/uso terapêutico , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-6/imunologia , Rim/imunologia , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/imunologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica/imunologia
19.
J Chem Phys ; 145(19): 194203, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27875876

RESUMO

We present novel means to hyperpolarize deuterium nuclei in 13CD2 groups at cryogenic temperatures. The method is based on cross-polarization from 1H to 13C and does not require any radio-frequency fields applied to the deuterium nuclei. After rapid dissolution, a new class of long-lived spin states can be detected indirectly by 13C NMR in solution. These long-lived states result from a sextet-triplet imbalance (STI) that involves the two equivalent deuterons with spin I = 1. An STI has similar properties as a triplet-singlet imbalance that can occur in systems with two equivalent I = 12 spins. Although the lifetimes TSTI are shorter than T1(Cz), they can exceed the life-time T1(Dz) of deuterium Zeeman magnetization by a factor of more than 20.

20.
Am J Physiol Renal Physiol ; 310(3): F217-21, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26311115

RESUMO

Serum FGF23 is markedly elevated in chronic kidney disease and has been associated with poor long-term outcomes. FGF23 expression is increased by activation of the FGF receptor 1 (FGFR1) in rats with normal renal function and in vitro in bone-derived osteoblast-like cells. We studied the regulation of FGF23 by FGFR1 in vivo in acute and chronic uremia in mice and rats. Folic acid-induced acute kidney injury increased calvaria FGF23 mRNA and serum FGF23 and parathyroid hormone (PTH) levels at 6 h. The FGFR1 receptor inhibitor PD173074 prevented the folic acid-induced increase in both FGF23 mRNA and serum levels but had no effect on serum PTH levels. A more prolonged uremia due to an adenine high-phosphorus diet for 14 days resulted in high levels of FGF23 mRNA and serum FGF23 and PTH. PD173074 decreased serum FGF23 and mRNA levels with no effect on PTH in the adenine high phosphorus-induced uremic rats. Therefore, a derangement in FGF23 regulation starts early in the course of acute kidney injury, is in part independent of the increase in serum PTH, and involves activation of FGFR1. It is possible that FGFR1 in the osteocyte is activated by locally produced canonical FGFs, which are increased in uremia. This is the first demonstration that activation of FGFR1 is essential for the high levels of FGF23 in acute and chronic experimental uremia.


Assuntos
Injúria Renal Aguda/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Osteócitos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Crânio/metabolismo , Uremia/metabolismo , Injúria Renal Aguda/sangue , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Adenina , Animais , Doença Crônica , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Ácido Fólico , Masculino , Camundongos Endogâmicos C57BL , Osteócitos/efeitos dos fármacos , Hormônio Paratireóideo/sangue , Fósforo na Dieta , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Crânio/efeitos dos fármacos , Regulação para Cima , Uremia/sangue , Uremia/induzido quimicamente , Uremia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...